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Abstract

Conventional wisdom suggests that promising free information to an agent would crowd out costly
information acquisition. We theoretically demonstrate that this intuition only holds as a knife-edge case in
which priors are symmetric. Indeed, when priors are asymmetric, a promise of free information in the
future induces agents to increase information acquisition. In the lab, we test whether such crowding out
occurs for both symmetric and asymmetric priors. Our results are qualitatively in line with the predictions:
when priors are asymmetric, the promise of future free information induces subjects to acquire more costly
information.
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1 Introduction

Providing easily digestible information to “nudge” individual behavior has recently become a major theme
in the literature on consumer choice.1 It has also been demonstrated to play an important role in improving
political choices.2 An underexplored issue is the impact that such exogenous information provision may
have on incentives for costly information acquisition that individuals could undertake on their own. At first
glance, it may appear that the promise of free information would simply crowd out costly information
acquisition. However, it turns out that for this to be true, the agent must be indifferent between actions so
that an arbitrarily small amount of information would be decisive. Since this relies on initial exact
indifference, it would not be something one could expect to observe often in real life.

In the absence of exact indifference, the promise of free information in the future can incentivize the agent
to acquire more information than they would otherwise. The intuition for this result is grounded in the fact
that information that does not affect one’s choice has no (instrumental) value. Unless one is ex ante
indifferent, a small amount of information will do little to change posterior beliefs and will therefore not
affect choices. That is, weak signals do not affect optimal behavior and are payoff irrelevant ex post, no
matter their realization. This gives rise to the Radner and Stiglitz (1984) observation that the marginal
value of small amounts of information is almost always zero. Thus, individual demand for information
would normally exhibit discontinuities at zero since there is a minimum scale at which information should
be acquired. This is the well-known Radner-Stiglitz nonconcavity in the value of information.3

A promise of delivering free additional information after an agent completes her costly acquisition can
“smooth out” this nonconcavity. Indeed, if an agent knows that additional information will be provided,
any information she acquires on her own will be valuable with positive probability so that the marginal
value of a small amount of information is also positive. Hence, the promise of free information can
stimulate acquiring small amounts of information, which otherwise should never be acquired.

In this paper, we provide a model of costly information acquisition in which agents are promised free
information in the future, and test the predictions of this model in the lab. In our experimental design,
subjects must choose between two options that are equally likely to be correct and can purchase information
relevant to this decision. They also know that some relevant information will be provided for free. We vary
the timing with which this free information is observed. In particular, the free information is provided
before or after the information acquisition decision, or half is provided before and half after. Since free
information that is observed before individual information acquisition can lead to updated priors, our
design features both symmetric priors and asymmetric priors.

1Consider, for instance, Bollinger et al. (2011) on calories for Starbucks purchases, Chaloupka et al. (2015) on smoking warning
labels, Bhargava et al. (2017) on improvements in the presentation of health insurance plans, and Allcott and Taubinsky (2015)
on comparisons of light bulb technologies. For a recent review, see Bernheim and Taubinsky (2018).

2For example, León (2017) studies the impact of information on monetary penalties for abstention on turnout in Peruvian
municipal elections. Larreguy et al. (2020) provide evidence regarding the impact of information about government performance
on voting outcomes in Mexico.

3Chade and Schlee (2002) show that the Radner-Stiglitz nonconcavity is an extremely robust feature of costly information
acquisition environments.
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We conducted two waves of data collection. In the first, the timing of information acquisition was varied
between subjects, while in the second, it was varied within subjects. Our experimental design across two
waves allows us to explore the predictions of the model using both between- and within-subject variation.
The results, both at the aggregate and the individual level, are qualitatively consistent with the predictions
of the model: we find that when priors are asymmetric, subjects acquire more information when
information is promised in the future. However, when priors are symmetric, the opposite is true.

The potential complementarity between free information and incentives for information acquisition has
not, to the best of our knowledge, been clearly stated or tested. However, our work relates to the recent
theoretical and experimental work on rational inattention (Caplin and Martin, 2015; Caplin and Dean,
2015; Caplin and Martin, 2018; Dean and Neligh, 2017). Similar to these studies, we explore the
consequences of agents rationally deciding how much costly information to acquire. Promising additional
information in the future allows us to directly vary the set of available informational strategies. The
interaction between individual information acquisition and the timing of free information provision that we
explore here may be seen as a novel implication of rational inattention.4 Our experimental test also relates
to recent laboratory studies on costly information acquisition in collective decision-making (Bhattacharya
et al., 2017; Elbittar et al., 2020; Grosser and Seebauer, 2016).5

2 Theory
We consider a simple model of information acquisition with two possible states of the world, Ω = {R,B},
and two possible actions, a ∈ {r, b}.6 A risk-neutral agent, who assigns a prior probability
P (R) = β ∈ (0, 1) to ω = R, chooses action a, and her utility, U , depends only on a and ω.7

We assume that decision-making is different between the two states as long as her decision is correct.
Specifically, we assume that U (R, r) = U (B, b) = 0. Her attitude toward the two possible errors may
differ so that U (B, r) = −q and U (R, b) = − (1− q). With these parameters, the agent would be willing
to choose a = r if and only if P (R) ≥ q. Thus q ∈ (0, 1) may be interpreted as the degree of certainty
necessary for the agent to choose a = r.

Each signal Si ∈ {r̂, b̂} is binary and correlated with the state of the world so that
P (Si = r̂|ω = R) = P (Si = b̂|ω = B) = p ∈

(
1
2 , 1

)
. Conditional on the state, signals are independent

and identically distributed (i.i.d). Before choosing a, the agent decides how many signals she would like to

4A somewhat similar effect has been noted by Caplin and Martin (2018), who explore, from a rational inattention standpoint, how
varying default options presented to subjects may nudge them to either acquire information or to “drop out.”

5These studies establish a framework in which potential informational spillovers from increased information acquisition generated
by delayed communication between group members could be explored. It is of interest that, in the last two studies referenced, the
subjects consistently acquired less information than predicted by the experimental setting. Elbittar et al. (2020) propose that this
may arise from biased priors, which effectively lead to a lack of information acquisition of the sort we study in this current paper.
An offer of future information, which could be interpreted as arising from the promise of jury deliberation, would be expected to
help resolve this problem.

6This simplified setting matches the model tested in our experiment, but the results we present are fairly general and follow from
Radner and Stiglitz (1984) and Chade and Schlee (2002).

7We assume risk neutrality in this section for simplicity. Introducing risk aversion does not qualitatively change predictions. In
particular, individual willingness to pay for information is nonmonotonic in the level of risk aversion (assuming, for instance, a
constant relative risk aversion (CRRA) utility function), with effects of risk aversion being exceedingly small for any plausible level.
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purchase, v, at a constant per-signal cost c > 0. She also knows that a fixed number of free signals, n, will
be observed after she chooses how many signals to purchase but before she chooses a. We concentrate on
the interaction between the timing at which the free signals are observed by the agent and her decision to
acquire additional signals.

The posterior belief of a Bayesian agent who observes m signals Si = r̂ and k < m signals Si = b̂ is

P
(
R|m signals r̂ and k < m signals b̂

)
=

βpm−k

βpm−k + (1− β) (1− p)m−k
.

Since utility U depends only on a and ω, information only has an instrumental value. It is only ex ante
valuable if it has the potential to change an agents action, a. The agent changes an action when
E[U(ω, r)|signals] > E[U(ω, b)|signals].8 Thus, the smallest number of signals such that observing them
has ex ante positive value is

n∗ = min
{
k ∈ N :

βpn

βpn + (1− β) (1− p)k
> q >

β (1− p)n

β (1− p)n + (1− β) pn

}
·

As long as β ̸= q and p is close enough to 1
2 (i.e., information comes in small increments), n∗ > 1: small

amounts of information are useless. This is the manifestation of the Radner-Stiglitz nonconcavity in our
setting. On the other hand, as long as the agent observes N ≥ n∗ − 1 signals in addition to whatever
information she acquires, even a single signal will always have a positive value. Thus, provided c is
sufficiently small, the promise of free signals will increase the level of costly information acquisition. Since
acquiring a single signal is useless without the promise of free signals, the free signals cannot displace the
agent’s own information acquisition effort; it can only be complementary to it.

There is, however, a special case in which any small amount of information is ex ante valuable. This
happens if β = q so that without observing any signals, the agent is indifferent between the two actions. In
this case, standard Bayesian updating implies that she would choose a = r whenever m ≡ #{i : Si = r̂} is
bigger than k ≡ #{i : Si = b̂} and would choose a = b whenever k > m (the agent is indifferent whenever
k = m). If β = q, then standard Bayesian updating coincides with the simple “count-the-signals” rule of
thumb, greatly simplifying the decision the agent faces. Notably, however, this is also the case in which
observing even a single signal would break the indifference so that the marginal value of information at zero
is, in fact, positive. This leads to a reversal of the expected impact of promising free signals: there is no
nonconcavity in the value of purchased signals to smooth via the promise of free signals, and the agent is
predicted to “free ride” on this promise.

Except in the knife-edge case outlined above, the promise of n free signals can induce greater information
acquisition. While we are primarily interested in testing this result, it is worth noting that the increased
information acquisition will not improve the expected quality of the agent’s decisions. To see this, suppose
the n free signals, Sf

1 , ...S
f
n , were observed before the agent decides how many signals to purchase at cost.

Defining the difference between the number of free signals that indicate R and B as

8This is the same as −(1− P )q > −(1− q)P , or π > q (where π is the posterior probability of the first equation).
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Xf = #
{
i : Sf

i = r̂
}
− #

{
i : Sf

i = b̂
}

, we observe that in order for the realized free signals to impact the
agent’s choice of v, she would have to purchase more signals than Xf .

Indeed, suppose the number of signals she purchases is weakly less than |Xf |. Then, even if all of the signal
realizations are identical, the sign of m− k is the same as the sign of Xf , implying the same choice of v.
Thus, she should either buy a lot of information or none—Radner and Stiglitz (1984) in action. Of course,
even a single signal would be valuable if the realizations of the free signals “tie” so that Xf = 0. This tie can
only occur if the number of these signals n is even, in which case, irrespective of the true state of the world,
it would happen with probability P

(
Xf = 0

)
= n!

(n
2
!)

2 p
n
2 (1− p)

n
2 > 0.

3 Experimental Design
Our main experimental task follows a standard information acquisition environment (Elbittar et al., 2020;
Guarnaschelli et al., 2018; Battaglini et al., 2010). In each of the 24 periods, subjects earn more money if
they correctly guess the true binary state of the world, Ω = {R,B}, framed as guessing the color of a jar.
Subjects know that the true color of the jar is equally likely to be red or blue. The jar contains 100 balls: 60
corresponding to the jar’s color and 40 of the other color. Each signal is a ball randomly drawn from the jar
(with replacement) so that the color of a signal corresponds to the state with probability 0.6. Subjects know
they will receive four free signals and can acquire up to five additional signals at a constant marginal cost c.
After all signals are observed, the subject guesses the color of the jar.

In each period, the cost of purchased signals is drawn from a uniform distribution between 0 and 100.
Subjects observe the realized cost before deciding how many signals to purchase. After observing the
realized signals, they proceed to guess the color of the jar. Those who guess correctly earn E$1,000 minus
the cost of purchased signals; otherwise, they earn E$300 minus the cost of purchased signals.9 Note that
we deliberately induce payoffs and initial priors so that in the absence of any signals, subjects are exactly
indifferent between the jars. This made a subject’s guess extremely simple: a Bayesian subject would simply
guess the jar whose color corresponded to the majority of the observed signals. Importantly, and as we
demonstrate below, subjects overwhelmingly adopted this heuristic. This is an asset to our design as it
allows us to focus on the information acquisition decision, which is our primary outcome of interest.

Our treatment variable is the timing with which the realized free signals are observed. In treatment 0B, no
free signals are observed after the information acquisition decision. That is, all four free signals are observed
before the decision to acquire information. In treatment 2B, subjects observe two of the free signals before
the information acquisition decision. Thus, they are promised two signals in the future. Finally, in
treatment 4B, subjects know they will see all four free signals after the decision to acquire
information.

A feature of our design is that, in addition to variation in the timing of information provision, we have
exogenous variation in the realizations of the free signals that are observed before the information
acquisition decision. Since subjects will update their priors based on the realizations of any free signals they

9In the first 12 periods, subjects do not learn the true state before proceeding to the next period. In the second 12 periods, they do.
Instructions are available in appendix D.
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observe before deciding how many to purchase, the variation in these realizations gives rise to different
situations—updated priors βω = {1/2, 9/13, 81/97} with different corresponding predictions. We will
refer to a situation within a treatment by noting the number of realized signals that corresponded to a
single color. For example, 0B(4 : 0) refers to the situation in which a subject observes all four free signals
before deciding how many to purchase and all four free signals are the same color. Due to the nonconcavity
in the value of information, the main prediction of the model is that promising future information—as in
2B relative to 0B—should induce greater information acquisition when the updated prior is asymmetric
(βω = 9/13). The opposite is true in the knife-edge case, where the updated prior leads to indifference
(βω = 1/2).10

The intuition is as follows: consider situation 0B(3 : 1), where a subject observes four free signals before
she decides how many to acquire at cost and is shown three signals of the same color (βω = 9/13).
Purchasing two signals or less cannot provide evidence sufficient to change the optimal guess. Thus, she
would have to purchase at least three signals at cost for this additional information to have any value. Such
a subject will drop out by purchasing no signals at all unless the realized cost is extremely low. Contrast this
with 2B(2 : 0), where a subject observes both signals of the same color (βω = 9/13). In this case,
purchasing a single additional signal has a positive value since the promised information (two additional
free signals) can smooth out the nonconcavity.

Table 1 presents the predicted marginal value of each additional signal across every informational situation
in which a risk-neutral subject may find herself.11 The different predictions across informational situations
are reflected in the marginal value of additional signals.

3.1 Experimental Tasks and Protocols
Upon arrival, subjects checked in and were assigned to a computer. For each of the four experimental tasks,
paper copies of the instructions were distributed and videos of the instructions were played.12 Before
subjects made decisions, they had to pass a quiz to ensure their comprehension.

In all sessions, the first task subjects faced was the 24 periods of the jar-guessing task described above. The
second task was a risk elicitation task using a multiple-price list format. The two remaining tasks were
additional jar-guessing tasks (of 12 periods each). Subjects knew that one of the four tasks would be
randomly selected and their decisions in a single (randomly selected) period of the selected task would
determine their earnings.13 Total earnings were the sum of the earnings from the randomly selected choice
plus the show-up fee and a starting balance of E$120.

10An additional advantage of this set-up is the effective oversampling of the otherwise rare knife-edge case (βω = 1/2).
11We use the risk-neutral benchmark for two reasons: tractability and predictive power. Introducing risk aversion into the model

has a nonmonotonic effect in the level of risk aversion. Further, even when considering a level of risk aversion that maximizes the
change in predicted information acquisition, the effect is negligible.

12Headphones were provided when treatments were varied between subjects within a session.
13If the risk elicitation task was chosen, one of the 10 lottery choices was randomly chosen for payment.
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We conducted two waves of sessions.14 In the first wave, 72 undergraduates (mainly) from Universidad
Francisco Marroquín (UFM) participated in the experiment.15 Within each session, a third of the subjects
were randomly assigned to one of the three treatments for the first task; that is, we implemented all
treatments within the same session (to different participants). We used the same set of (predefined
random) draws across treatments. The third (fourth) task was 12 periods of a task intended to measure
independence neglect (base rate neglect). We report data from six 12-participant sessions.16

In the second wave, 84 undergraduates from Chapman University took part.17 In each of these sessions, we
used i.i.d. draws for each individual decision. All subjects within a session participated in the same
treatment for the first 24 periods, and this treatment was varied between sessions. In addition, for tasks
three and four, we repeated the main jar-guessing task for both of the other two treatments. We report data
from six 14-subject sessions.18 Thus, in these sessions we have a between-subject variation task (in the first
24-period) that is comparable with the first wave and within-subject variation from tasks one, three, and
four.

After completing the four tasks, subjects took part in a postexperimental survey. We collected general
demographic data (gender, age, number of siblings), major and school, self-reported GPA, familiarity with
Bayes’s rule, number of courses taken across different topics (math, statistics, and ethics), and previous
participation in research experiments. We also conducted an unincentivized cognitive reflection test
(Frederick, 2005). Each session lasted about 90 minutes, including the survey and private payment. The
experiment interface was programmed using zTree (Fischbacher, 2007).

14The motivation for the two waves of data collection is as follows. First, the results from the first wave of data collection were so
striking that we wanted to replicate our results to ensure their robustness. Second, we wanted to ensure that our results were not
driven by a particular subject pool, so we ran the second wave of sessions at another laboratory (further, with one subject pool in
Guatemala and the second from the United States, we can be confident that our data do not contribute to the WEIRD problem
Kanazawa, 2020). Third, we varied treatments between subjects and within subjects in the second wave of data collection to
measure individual-level treatment effects.

15Payments were converted to local currency at a rate of E$6 = Q1 (E$46.2 = 1 USD), and participants received a show-up fee
of Q20 (2.6 USD).

16We discarded data from one session from this first wave due to problems with the display of instruction videos on several
computers, which was not revealed until the end of the session.

17Payments were converted to local currency at a rate E$40 per 1 USD, and subjects received a show-up fee 7 USD.
18We have perfect balance regarding the order in which the within-subject variation of treatments was implemented across the six

sessions.
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4 Data and Empirical Strategy
We exploit both the between- and within-subject variation in our data. We pool data from the 24 periods
of our main task across the two waves of data collection and refer to this as the between-subject (BSs)
data.19 In addition, from our second wave of sessions, we compare the decisions of the 84 subjects in the
first task (which corresponds to one of our three treatments) to their decisions in tasks three and four
(which correspond to the other two treatments). This is the within-subject (WSs) data.20

We test our main hypotheses using both nonparametric tests and reduced-form regressions. For the
nonparametric tests, we take the individual-level average within a treatment to be an independent
observation. Thus, we have 52 independent observations per treatment in the BSs data and 84
matched-paired observations in the WSs data.21 For the BSs data, we use the robust rank order test
(Fligner and Policello, 1981) for pairwise comparisons and the Kruskal-Wallis test for comparisons of more
than two categories (i.e., for βω = 1/2, 4B = 2B = 0B).22 For the WSs data, we use the Wilcoxon sign-rank
test for pairwise comparisons and the Friedman test for comparisons of more than two categories. Except
for the Kruskal-Wallis and Friedman tests, we report p values from one-sided tests since our model
provides clear predictions regarding the direction of treatment effects.

To evaluate our main hypotheses using regressions, we separately report estimates obtained using the BSs
data or the WSs data. Our model is

Yit = α0 + α1β
ω= 1

2
t 2Bi + α2β

ω= 1
2

t 0Bi + α3β
ω= 9

13
t 2Bi + α4β

ω= 9
13

t 0Bi + γCostit +X ′δ + ϵit, (1)

where Yit is either information acquisition at the intensive margin (whether any signals were purchased) or
at the extensive margin (the number of signals purchased).23 Our independent variables are treatment and
prior dummies, and we control for the cost of acquiring information. X is a vector of additional controls
that includes period (linear and squared), a dummy for the wave of the data (task order controls) for BSs
(WSs) data, and, in some WSs specifications, individual fixed effects. In the interest of brevity, we
summarize regression results using coefficient plots and relegate tables of the relevant regressions to the
appendix.

If the promise of free signals in the future increases information acquisition when priors are asymmetric,
then α3 > α4. Further, if this same promise reduces information when priors are symmetric, then
α0 < α1 < α2.

19Our results are robust to considering each sample separately. This is illustrated in figure B.1, which contains coefficient plots
from regressions estimating the probability of purchasing signals, with the results estimated separately for each sample. Reported
coefficients correspond to situations, broken down by prior. Figure B.2 contains similar coefficient plots where the dependent
variable in question is the number of signals purchased.

20Note that there is perfect balance in the WSs data regarding the order in which the three treatments were run. While the
within-subject variation present in these data yields more statistical power, this was not our motivation for varying treatments on
a within-subject basis. Rather, this variation allows us to measure individual-level treatment effects.

21Tables A.1 and A.2 present the summary of results by treatment and situation, separately for each wave.
22Feltovich (2003) notes that the “robust rank-order test is a modification of the Wilcoxon–Mann–Whitney test, designed to be

appropriate in more situations than Wilcoxon–Mann–Whitney.”
23We also report regressions where the dependent variable is the accuracy of guesses.
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5 Results
Before turning to the treatment differences we are primarily interested in, we consider a number of
ancillary predictions as a check on whether subjects understood the environment. First, recall that a
Bayesian subject would guess the color that corresponded to the majority of observed signals (and would be
indifferent in case of a tie). Decisions in our experiment are consistent with this rule 94.4 percent (96.5
percent) of the time in the BSs (WSs) data. Second, as table 1 illustrates, an idiosyncratic feature of our
experimental design is that purchasing a positive and even number of signals is dominated since the last of
these would never make the subject strictly prefer to change her decision. We observe that, conditional on
purchasing information, subjects purchase an odd number of signals 73.2 percent of the time (77.6 percent
during the second half ).

Table A.2 provides summary statistics of observed and predicted instances of “dropping out” (no
information acquisition), amount of information acquired, and proportion of correct guesses by treatment
and informational situation. Figure 1 presents, separately for the between- and the within-subject data,
histograms of predicted and observed information acquisition by treatment and informational situation.24

We observe that, across the informational situations, subjects purchase information more frequently than
predicted and also purchase more signals than predicted.25 At the same time, the data strongly support our
main theoretical predictions. Thus, under asymmetric priors (i.e., βω = 9/13 in top row), a promise of
future information induces greater information acquisition. This effect is strongest on the extensive margin:
subjects drop out less and acquire at least some information more frequently. As predicted, the opposite is
true in the knife-edge case (βω = 1/2), where a promise of future information induces lower information
acquisition.

Result 1.1 (extensive margin): With asymmetric priors (βω = 9/13), subjects are more likely to acquire a
positive amount of information when free information is promised in the future (2B(2 : 0)) than when no future
information is offered (0B(3 : 1)).

Support: The rate of information acquisition when free signals are promised after the purchasing decision is 0.535
(0.408) for the BSs (WSs) data and only 0.345 (0.313) when no free signals will be observed in the future. Using
nonparametric tests, we reject the null that the probability of acquiring information in 2B(2 : 0) ≤ 0B(3 : 1)

using either the BSs data (U = 2.702, p = 0.003) or the WSs data 2B(2 : 0) ≤ 0B(3 : 1) (z = 2.475,
p = 0.006).

Our reduced-form estimates confirm the result. The top panel of figure 2 plots the relevant coefficients from a linear
probability model. The full results of the regressions exploring the extensive margin are reported in table A.3.26 We
reject the null hypothesis using either a linear probability model (BSs: p = 0.004, WSs: p = 0.015) or a random

24Appendix figures B.3 and B.4 present cumulative density functions (CDFs) of predicted and observed information acquisition
decisions for BSs and WSs.

25Appendix table A.1 contains both predicted and observed summary statistics by treatment (not broken down by situation),
conditional on the realized draws observed by subjects when they made their information acquisition decisions.

26For sake of brevity, in this section we report the p values for a (one-sided) test of the alternative hypothesis that α3 > α4, as
described in equation (1).
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effects logit model (BSs: p = 0.005, WSs: p = 0.009). Using the linear probability model, we find that the
probability of acquiring information increases by 8–17 percentage points (depending on whether we use BSs or WSs
data) when future information is promised.

Having established that the promise of free signals increases the probability that a subject will purchase
signals when priors are asymmetric, we turn to the intensive margin. Does the promise of free signals lead
to more signals being purchased when priors are asymmetric?

Result 1.2 (intensive margin): When priors are asymmetric (βω = 9/13), the promise of free information in the
future (2B(2 : 0)) leads subjects to acquire more information at cost, relative to the situation in which no free
signals are promised in the future (0B(3 : 1).

Support: In the BSs (WSs) data, subjects acquire 0.315 (0.125) more signals when future information is
promised, on average. This is an increase of 37 percent (16 percent) compared to the situation when no future
information is promised. Using nonparametric tests, we find that the number of signals acquired in situation
2B(2 : 0) is less than in situation 0B(3 : 1). This is true for both the BSs data (U = 1.680, p = 0.046) and the
WSs data (z = 1.542, p = 0.062), although the results are only marginally significant with the WSs data.

The reduced-form results obtained from our regressions are only marginally significant. This is true when
estimating a random effects Poisson model (BSs: p = 0.065, WSs: p = 0.051) or a random effects Tobit model
(BSs: p = 0.058, WSs: p = 0.001).27 The top panel of figure 3 presents coefficient plots for the random effects
Poisson model. As the figure illustrates, although our results are only marginally significant, they have the predicted
sign and are consistent across our two subsamples.

As discussed previously, exogenous variation in the realizations of the free signals that subjects observe
before the information acquisition decision allow us to sample the relatively rare knife-edge case in which
the updated prior implies indifference. Specifically, in situations 4B and 2B(1 : 1) subjects are promised
free information in the future but have a prior of βω = 1/2 when purchasing signals. In situation 0B(2 : 2)

(where the prior is also βω = 1/2), no additional free signals are forthcoming. Our model predicts that the
promise of free signals in the future will reduce costly information acquisition in this case. This prediction
is borne out in our data.

Result 2.1 (extensive margin): When βω = 1/2, subjects are less likely to purchase signals when they know that
they will observe free signals in the future. That is, the probability of purchasing signals is higher in 4B or
2B(1 : 1) than in 0B(2 : 2).

Support: We reject the null hypothesis that the probability of acquiring any information is equal across the three
relevant situations (χ2 = 13.862, p < 0.001 for BSs data; Friedman = 195.2, p < 0.0001; for WSs data).
When restricting attention to pairwise comparisons, we reject the null that 4B ≥ 0B(2 : 2) (BSs data:
U = −3.813, p < 0.0001; WSs data: z = −5.605, p < 0.0001), that 2B(1 : 1) ≥ 0B(2 : 2) (BSs data:
27Appendix table A.4 presents the full results for the regression estimates.
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U = −1.680, p = 0.046; WSs data: z = −3.953, p < 0.0001), and that 4B ≥ 2B(1 : 1) (BSs data:
U = −2.2253, p = 0.013; WSs data: z = −3.341, p < 0.001).

Our reduced-form models, reported in table A.3 and illustrated in the bottom panel of figure 2, also strongly support 
these results.28

This result on the extensive margin is in line with the predictions of our model. However, it could be the 
case that the promise of free balls lowers the probability that a subject purchases signals while still 
increasing the quantity of signals purchased. As such, we turn to the intensive margin.

Result 2.2 (intensive margin): When βω = 1/2, the promise of free signals to be observed after the information 
acquisition decision leads subjects to purchase fewer signals at cost. That is, fewer signals are purchased in 4B or 
2B(1 : 1) than in 0B(2 : 2).

Support: We reject the null hypothesis of equal information acquisition across the three relevant situations. Using 
the BSs data, this result is marginally significant (χ2 = 4.752, p = 0.093), while it is highly significant
(F riedman = 194.96, p < 0.0001) when using the WSs data. When comparing situations with the largest 
difference in the number of free signals promised in the future (4B versus 0B(2 : 2)), the results are highly 
significant. We reject the null that 4B ≥ 0B(2 : 2) (BSs data: U  = −2.260, p = 0.0119; WSs data: −2.870, 
p = 0.002). When there are only two additional signals promised in the future, the results have the predicted sign, 
but the significance of the nonparametric tests are inconsistent between the BSs and the WSs data. We can only 
reject the null that 2B(1 : 1) ≥ 0B(2 : 2) using the WSs data (BSs data: U = −1.194, p = 0.116; WSs data: 
z = −0.898, p = 0.019). Similarly, for the null that 4B ≥ 2B(1 : 1), the results are only significant using the 
WSs data (BSs data: U = −0.909, p = 0.182; WSs data: z = −2.431, p < 0.007). This is driven by the higher 
level of statistical power available in the WSs data.

Our reduced-form results are consistent with the results of the nonparametric tests. Plots of the relevant coefficients 
are contained in the bottom panel of figure 3 .29 Note that the regression analysis consistently demonstrates that 
more signals are purchased in situation 4B than in situation 0B(2 : 2). This is true for estimates obtained using a 
random effects Poisson model or a random effects Tobit model. However, when the comparison is less stark, we only 
reject the other null hypotheses (2B(1 : 1) ≥ 0B(2 : 2) and 4B ≥ 2B(1 : 1)) using the WSs data.

In addition to the main hypotheses, our data support the prediction that promising free information in the 
future will not increase decision quality when priors are asymmetric. Despite differences in the amount of 
information acquired, the proportion of time the subjects choose the correct jar is no higher in 2B(2 : 0) 
than in 0B(3 : 1).30 However, in the knife-edge situations, where even small amounts of information are 
valuable, providing free information in the future is expected to slightly increase the predictive accuracy of

28The only exception is 2B(1 : 1) ≥ 0B(2 : 2), where the difference is not statistically significant with the BSs data; however, it is
highly significant (p < 0.001) with the WSs data.

29Table A.4 presents the full results for the regression estimates.
30Nonparametric tests: p = 0.368 for BSs, p = 0.6146 for WSs. Reduced-form regressions: p > 0.307 for BSs and p > 0.104

for WSs.
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guesses. We find support for this when comparing the most extreme situation with symmetric priors. That 
is, predictive accuracy is higher when four signals are promised relative to the case when no additional free 
signals are forthcoming (0B(2:2) versus 4B).31

As demonstrated above, we find broad support for the theoretical predictions of our model. Most 
importantly, we find empirical support for the theoretically predicted ranking of information acquisition in 
the six situations we consider. However, our model fails to predict the observed level of information 
acquisition; our subjects consistently overacquire information. Such overacquisition is commonly observed 
in experimental settings, and our results are in line with those of Page and Siemroth (2017), who employ a 
similar environment to study information acquisition in asset markets. Similar overinvestment in 
information has been observed by Gretschko and Rajko (2015) in an auction context and by Chen and He 
(2021) and Hakimov et al. (2021), who study information acquisition in matching.

There is little consensus in the literature on the reasons for this rather consistent observation, and a number 
of possible explanations have been proposed. For example, Bhattacharya et al. (2017) and Meyer and 
Rentschler (2022) observe overinvestment in information in voting environments and consider quantal 
response equilibrium as a possible explanation. This, however, cannot explain our data as we focus on a 
decision-theoretic environment. Gretschko and Rajko (2015) hypothesize that overacquisition of 
information could be driven by regret avoidance.32 Chen and He (2021) consider several explanations and 
empirically assess the drivers of willingness to pay for information in a matching contest. They find that 
subjects’ willingness to pay increases in their beliefs about the willingness to pay of others and that curiosity 
also plays a significant role. Page and Siemroth (2017) find that information acquisition increases in subject 
endowments and decreases in risk aversion and experience in financial markets. They also find that 
observing inconclusive information leads to more information acquisition.

Conclusively determining the ability of most of these explanations to explain the overacquisition observed 
in our data would require additional research that would systematically vary aspects of the environment. 
This is beyond the scope of this paper, although we view it as a promising avenue for future research. 
However, since the second task of our experiment elicited the risk preferences of subjects, we can determine 
whether observed behavior can be explained by risk aversion. Unfortunately, the answer is negative. The 
difference between the predicted level of information acquisition of a risk-neutral agent and of an agent 
exhibiting the median level of risk aversion observed in our experiment is economically trivial.33 Further, 
accounting for this median level of risk aversion often reduces the value of information. This demonstrates 
that risk aversion cannot explain our data on aggregate. Below, we will also demonstrate that observed risk 
aversion cannot explain the observed patterns in our data when accounting for individual heterogeneity in 
responses.

31BSs: U = 2.136, p = 0.016, WSs: z = 3.607, p < 0.001. We also estimate the probability of correctly guessing the state with
a linear probability model and a random effects logit model. Our dependent variable is a dummy on whether they correctly
guessed the color of the jar. The results are presented in table A.5. Again, we find consistent support for the predictions.

32Interestingly, regret avoidance has also been proposed as an explanation for information avoidance; see, for example, Golman et
al. (2017).

33The largest change in willingness to pay is for the first signal in situation 2B(2 : 0). Here the willingness to pay of the
risk-averse agent is 1.72 less than in the risk-neutral case. All other differences in willingness to pay are less than 1 in magnitude.
We assumed a CRRA utility function with the risk-aversion coefficient, consistent with the median choice observed in our data
for this analysis.
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5.1 Individual Behavior
In this subsection we explore the heterogeneity of individual-level behavior. We begin with a descriptive
analysis of individual heterogeneity and then focus on the WSs data to analyze individual-level behavior
across treatments.

We start by checking whether individual subjects respond to experimental parameters in a manner
consistent with our theoretical predictions. In the WSs data only 2/84 (2.38 percent) subjects never acquire
any information in all 48 periods; 2/84 (2.38 percent) subjects buy at least one signal in all 48 periods. The
median [10th, 90th percentile] individual buys at least one signal in 42.7 percent [10.4 percent, 81.3
percent] of the periods.34 Most subjects also seem to have a downward-sloping demand for signals: for
70/84 (83.3 percent) of our subjects, we estimate a statistically significant negative effect of the cost on
information acquisition (see figure B.5).35

In a more subtle test of the theory, most subjects seem to understand the nonmonotonic value of signals, in
which purchasing an even number of signals is never predicted. In fact, conditional on purchasing a
positive number of signals, 11/84 (13.1 percent) of subjects always acquire an odd number of signals,
whereas no subject chooses to always acquire an even number of signals. Again, conditioning on
purchasing a positive number of signals, the median [10th, 90th percentile] subject acquires an odd number
of signals 73.5 percent [52.1 percent, 100 percent] of the time. The number of subjects who, when
purchasing, always purchase an odd number of signals more than double to 23/84 (27.4 percent) when
excluding the first 12 periods, suggesting possible learning with experience.36

For the rest of this subsection, we rely on the WSs data to examine heterogeneity in treatment effects across
individuals. We focus on the case of the asymmetric prior where βω = 9/13, and theory predicts that
subjects will acquire more information if free information is promised in the future. For each individual i,
we compare the mean number of signals purchased across all periods in which subject i was in situation
2B(2 : 0) to the mean number of signals purchased when subject i was in situation 0B(3 : 1).37 We
separately consider the comparison between the two knife-edge situations with a symmetric prior of
βω = 1/2: 2B(1 : 1) and 0B(2 : 2).

To provide a meaningful comparison, for each subject, we compare the observed individual-level treatment
effect to the predicted individual-level treatment effect, conditioning on the realized cost of information
subjects actually faced in each period. We do this to account for the fact that subjects faced different costs
across periods since the cost of signals is randomized in each period. For each subject, we directly compare

34Among the participants in the first wave (UFM subject pool), 1/72 (1.4 percent) never purchases any information and 8/72
(11.11 percent) always acquire at least one signal. The median [10th, 90th percentile] individual buys at least one signal in 66.7
percent [25 percent, 100 percent] of periods.

35When restricting this analysis to subjects in the first wave (UFM subject pool), we see similar results. Since we have half the
observations for this subsample (24 instead of 48), we use 90 percent, rather than 95 percent confidence intervals, to claim
statistical significance. Figure B.6 illustrates that only 7/72 (9.7 percent) subjects do not have downward-sloping demand.

36Among the subjects in the first wave (UFM subject pool), 13/72 (18.1 percent) always purchase an odd number of signals; 28/72
(38.9 percent) fully comply with the heuristic when restricting to the second half. Only 1/72 always purchase an even number of
signals. The median [10th, 90th percentile] subject, when purchasing signals, acquires an odd number of signals 78.6 percent [50
percent, 100 percent] of the time.

37In a given treatment, the number of periods in which a subject would be in each of these situations varies and depends on the
realizations of the free signals.
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the observed treatment effect to the predicted treatment effect, conditioning on the realized cost of
information.

On average, pooling across all subjects, we predict a positive mean difference of 0.141: more information is
predicted to be acquired when future free information is promised. However, there is considerable
heterogeneity at the individual level: predicted difference in means is positive for 46 (54.8 percent) subjects,
0 for 17 (20.2 percent), and negative for 21 (25 percent). (To reiterate, this happens because some subjects
faced lower costs in 0B(3 : 1) than in 2B(2 : 0).)

Figure 4 illustrates (for each of the 84 subjects from the wave 2 sessions) the observed difference in
individual-level information acquisition when βω = 9/13. Solid circles indicate the average number of
signals purchased in situation 2B(2 : 0) less the average number of signals purchased in situation
0B(3 : 1). Empty diamonds indicate the respective predicted difference. For comparison, figure 5 presents
the same for the knife-edge case of βω = 1/2. The white xs (+s) denote the two subjects who never
(always) acquire any signals.

In both of the preceding figures, the coloring of the solid circles denotes the relationship between the
observed treatment effect and the predicted treatment effect. Black circles denote individuals whose
observed difference in mean behavior across treatments has (weakly) the same sign as the predicted
difference. Red circles denote individuals where the observed and predicted differences have the opposite
sign. The vertical lines connecting the circle and diamonds indicate the distance between the observed and
predicted differences. Red lines denote instances in which the observed difference in mean behavior across
treatments is less than the predicted difference. For subjects whose observed difference has the same sign as
the predicted difference (black solid dots), the red line indicates that they underresponded to the
theoretically predicted treatment difference. Gray lines indicate instances in which the observed difference
has the same sign as the predicted difference but the magnitude is larger than predicted.

Of note is the fact that when βω = 9/13, the individual-level treatment effect fails to match the sign of the
predicted effect for only 17/84 of subjects. Further, when βω = 1/2, only 27/84 subjects fail to match the
sign of the observed and the predicted difference. That is to say, while there is significant heterogeneity in
individual-level treatment effects, our results are not driven by a small number of outliers. Rather, the
behavior of the majority of subjects are qualitatively in line with the theoretical predictions.

We next explore how well the individual-level treatment effects correlate with the predicted individual-level
treatment effects. Figure 6 presents a scatter plot and a linear fit (with the associated 95 percent confidence
interval) of predicted individual-level treatment differences and the predicted individual-level treatment
differences. The left panel illustrates situations where βω = 9/13, and the right panel illustrates situations
in which βω = 1/2. There is a strong, positive correlation both when βω = 9/13 (ρ = 0.517, p < 0.001)
and when βω = 1/2 (ρ = 0.688, p < 0.001).

These results are further backed by the regression analysis reported in tables A.6 and A.7. The tables report
ordinary least squares (OLS) estimates of the individual-level differences in behavior across treatments for
βω = 9/13 : 2B(2 : 0)− 0B(3 : 1) and βω = 1/2 : 2B(1 : 1)− 0B(2 : 2), respectively. In both tables,
the dependent variable in columns 1–2 (4–5) is individual differences in mean (median) information
acquisition across situations. The dependent variable in column 3 (6) is the individual observed deviation
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from predictions. Column 2 (4) shows that the predicted difference in means (medians) is positive and
statistically significantly correlated with the observed difference. The difference in means, however, is
smaller than (and statistically significantly different from) one. For the difference in medians (column 4),
we cannot reject the null hypothesis that the coefficient is equal to one.

Regarding individual-level characteristics that may correlate with treatment effects, we observe that the
only robust and consistent difference is related to the measured risk preferences, as measured by the number
of safe options the subject chose in the risk elicitation task.38 In particular, we find that treatment
differences are smaller for those who are more risk averse. However, it is important to note that the
magnitude of these coefficients is small.

The main takeaway is that we observe a strong and positive correlation between individual-level observed
and predicted difference in means (medians). Thus, despite individual heterogeneity, we find that a large
majority of subjects exhibit behavior that differs across treatments in the same direction as the theoretical
predictions and that individual differences in behavior across treatments are strongly correlated with the
theoretical predictions.

6 Discussion and Further Research
We present results of a laboratory experiment on the impact a promise of future information may exert on
individual information acquisition effort. We observe that offering future information encourages greater
costly information acquisition. Furthermore, when we explore the knife-edge case of symmetric priors, we
observe (as predicted) that the promise of future information reverses this result. At the aggregate level, the
differences across treatments are more pronounced on the extensive than on the intensive margin: a
promise of delayed information makes the agents less likely to choose not to acquire any information at all.
As predicted by the model, information acquired in this manner is ex post useless: the quality of the overall
decision-making is unaffected.

The aggregate results are not driven by a few subjects. When focusing on individual-level treatment
differences using the within-subject variation, we find that behavioral support for the theory is widespread.
Out of the 80 subjects who exhibit responsiveness to experimental parameters in their information
acquisition decisions, about 65 percent show a difference in information acquisition across the laboratory
environments going in the same direction as the theoretical prediction. Furthermore, we find a strong
correlation between the observed and predicted differences in mean information acquisition decisions
across treatments. Thus, we observe strong evidence to support the theory, both at the aggregate and the
individual level. The effect we identify appears to be an important, previously unobserved feature of costly
attention environments and may therefore be used to identify rational inattention in the field.

Though a promise of free information may create incentives for costly information acquisition that would
not exist otherwise, it does not improve the quality of individual decisions, nor the welfare of the

38The number of safe options is the number of times a subject chose the relatively safe option A, rather than the relatively risky
option B, in the 10 choices from the risk elicitation task. Since subjects can switch back and forth between option A and option
B (indicating inconsistent preferences, confusion, or indifference), we also control for whether subjects switched multiple times.
In addition, we control for whether a subject switched at all.

16



decisionmaker. This confirms the theoretical prediction that follows straightforwardly from Blackwell
(1962).39 However, in group settings, such as juries or committees, if we can use the promise of future
information to induce additional information acquisition effort by individuals, we may expect it to have
spillovers on others. In fact, this reasoning may be behind the typical prohibition for jurors to talk about the
evidence they listen to during a trial until all evidence is presented. In Hannaford et al. (2000), the authors
show intriguing evidence of increased drop out by jurors in a field experiment in which this prohibition was
relaxed, lending support for the hypothesis we have just laid out. Consequently, in terms of institutional
design, delay in information provision may be sufficient to discourage “informational dropout,” situations
in which agents choose to forgo attentional effort and make decisions based entirely on their prior beliefs.
It may also be a useful tool in experimental design as it could be used to avoid excessive dropout by subjects
that has been observed in some previous experimental studies (Elbittar et al., 2020).

Finally, this study poses some questions to the important literature that evaluates the impact of free
information provision and suggests that a more rigorous framework is needed. Since the information
provided in most studies cannot be anticipated at the moment of making information acquisition decisions,
it would seem that the impact of information provision may sometimes be ambiguous. Thus, a good
applied information provision design should take into account the nonconcavity in the value of
information, make explicit the underlying assumptions behind the baseline priors, and incorporate the
impact of established biases (such as, e.g., base rate neglect). Our paper aims to provide a laboratory
contribution to answering at least some of these questions.

39This is striking and an important aspect of our analysis since policymakers often seek to induce individual informedness under
the presumption that this is a social good.
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7 Tables

Table 1. Marginal Value of Information Acquisition

Updated Prior Situation Signal 1 Signal 2 Signal 3 Signal 4 Signal 5

βω = 1/2
4B 3.46 0 2.76 0 2.32

2B(1 : 1) 4.8 0 3.46 0 2.76
0B(2 : 2) 10 0 4.8 0 3.46

βω = 9/13
2B(2 : 0) 2.22 0 2.13 0 1.92
0B(3 : 1) 0 0 2.22 0 2.13

βω = 81/97 0B(4 : 0) 0 0 0 0 0.43

Notes: The table shows the marginal value of purchasing a signal in percentages of the prize value at the moment of information 
acquisition. To understand the numbers in this table, consider the marginal value of going from one to three signals having 
previously observed two red signals. Purchasing the extra two signals could change the agent’s choice only if either two or all three 
of the signals she is already set to observe (the two free signals and the one the agent has already decided to purchase) would turn 
out to be blue. In the former case, the agent would change her choice if she observes two blue signals. In the latter case, she would 
change her choice if she observes two red signals. Having observed two red signals, the agent’s current prior belief that the jar is 
red is β = 9/13. Combining the ex ante value of observing two blue signals after one red and two blue, and two red signals after 
three blue, and substituting the signal strength p = 0.6, we obtain 3 (1 − β) (1 − p) p4 − 3βp (1 − p)4 + β (1 − p)3 p2 − (1 − β) 
p3 (1 − p)2 = 2.13.
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Table 2. Summary Statistics by Situation

Updated Prior Situation Obs. Share No Info Avg. Balls Purchased Avg. Correct
Predicted Observed Predicted Observed Predicted Observed

Between-Subject Data

βω = 1/2
4B 1,248 0.749 0.453 0.675 1.345 0.695 0.684

2B (1 : 1) 581 0.651 0.339 0.921 1.551 0.620 0.645
0B (2 : 2) 423 0.319 0.253 1.324 1.730 0.521 0.617

βω = 9/13
2B (2 : 0) 667 0.849 0.465 0.436 1.168 0.740 0.729
0B (3 : 1) 614 0.957 0.655 0.212 0.853 0.725 0.712

βω = 81/97 0B (4 : 0) 211 0.972 0.787 0.142 0.559 0.896 0.877

Within-Subject Data

βω = 1/2
4B 1,008 0.736 0.546 0.641 1.14 0.683 0.676

2B (1 : 1) 479 0.647 0.438 0.766 1.25 0.612 0.620
0B (2 : 2) 361 0.307 0.343 1.30 1.50 0.589 0.554

βω = 9/13
2B (2 : 0) 529 0.853 0.588 0.393 0.907 0.704 0.709
0B (3 : 1) 490 0.951 0.694 0.245 0.782 0.702 0.682

βω = 81/97 0B (4 : 0) 157 0.987 0.828 0.064 0.433 0.847 0.815

Notes: The table shows summary statistics of predicted and observed actions for between- and within-subject data, according to the 
updated priors generated by the informational situation. “Obs.” denotes the number of observations collected in each informational 
situation. “Share No Info” is the relative number of instances where no information was purchased. “Avg. Balls Purchased” denotes 
the unconditional number of signals purchased. “Avg. Correct” is the share of correct guesses.
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8 Figures

Figure 1. Histogram of Predicted and Observed Balls Purchased by Treatment and Informational Case. The top 
panel shows between-subject (BSs) data, and the bottom panel shows
within-subject (WSs) data. The top row of each panel shows situations where βω = 9/13, and the bottom row of 
each panel shows the rare knife-edge case of indifference (βω = 1/2).
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Figure 2. Coefficient Plots for Linear Probability Estimates of the Effects of Promising Future Information on the 
Decision to Acquire Information (Extensive Margin). The figures shows results from joint estimates using all 
informational cases. The top panel (βω = 9/13) presents estimates of promising two balls (2B) after information 
acquisition relative to the omitted category of no information (0B) in the future. The bottom panel presents 
estimates of promising two (2B) and four (4B) balls after information acquisition relative to the omitted category of 
no information (0B) in the future for the rare knife-edge case of indifference (βω = 1/2).
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Figure 3. Coefficient Plots for Random Effects Poisson Model Estimates of the Effects of Promising Future 
Information on the Decision of the Number of Signals to Acquire (Intensive Margin). The figures shows results 
from joint estimates using all informational cases. The top panel (βω = 9/13) presents estimates of promising two 
balls (2B) after information acquisition relative to the omitted category of no information (0B) in the future. The 
bottom panel presents estimates of promising two (2B) and four (4B) balls after information acquisition relative to 
the omitted category of no information (0B) in the future for the rare knife-edge case of indifference (βω = 1/2).
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Figure 4. Across-Treatment Individual Difference in Mean Information Acquisition (2B–0B) Observed and 
Predicted for βω = 9/13. Participants are sorted by the predicted difference in means, from highest to lowest.
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Figure 5. Across-Treatment Individual Difference in Mean Information Acquisition (2B–0B), Observed and 
Predicted for βω = 1/2. Participants are sorted by the predicted difference in means, from lowest to highest.
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Figure 6. Correlation between Observed and Predicted Individual Differences across Treatments in Mean 
Information Acquisition across Treatments, for Different Updated Priors.
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A Additional Tables

Table A.1. Summary Statistics by Treatment

Treatment Subjects Share No Info Avg. Balls Purchased Avg. Correct
Predicted Observed Predicted Observed Predicted Observed

Between-Subject Data
4B 52 0.749 0.453 0.675 1.35 0.695 0.684
2B 52 0.756 0.406 0.662 1.35 0.684 0.690
0B 52 0.744 0.541 0.577 1.101 0.685 0.708

Within-Subject Data
4B 28 0.736 0.546 0.641 1.14 0.683 0.676
2B 28 0.755 0.517 0.570 1.07 0.660 0.667
0B 28 0.726 0.589 0.595 0.984 0.684 0.657

Table A.2. Summary Statistics for Main Task (BSs Data) by Wave

Updated Prior Situation Obs. Share No Info Avg. Balls Purchased Avg. Correct
Predicted Observed Predicted Observed Predicted Observed

UFM

βω = 1/2
4B 576 0.743 0.340 0.753 1.679 0.733 0.724

2B (1 : 1) 249 0.606 0.213 1.18 1.928 0.622 0.711
0B (2 : 2) 200 0.345 0.200 1.3 1.935 0.502 0.660

βω = 9/13
0B (2 : 0) 327 0.865 0.339 0.44 1.327 0.775 0.734
0B (3 : 1) 279 0.971 0.577 0.143 0.993 0.742 0.767

βω = 81/97 0B (4 : 0) 97 0.969 0.742 0.155 0.588 0.907 0.866

ESI

βω = 1/2
4B 672 0.754 0.549 0.609 1.058 0.663 0.650

2B (1 : 1) 332 0.684 0.434 0.726 1.268 0.617 0.596
0B (2 : 2) 223 0.296 0.300 1.34 1.547 0.538 0.578

βω = 9/13
0B (2 : 0) 340 0.832 0.585 0.432 1.015 0.706 0.724
0B (3 : 1) 335 0.946 0.719 0.269 0.737 0.71 0.666

βω = 81/97 0B (4 : 0) 114 0.974 0.825 0.132 0.535 0.886 0.886

Notes: The table shows summary statistics by the treatment and information scenarios for the main task (24 periods) of each wave, 
according to the updated priors generated by the informational case (situation). “Obs.” denotes the number of observations collected 
in each informational case. “Share No Info” is the relative number of instances where no information was acquired. “Avg. Balls 
Purchased” denotes the unconditional number of balls purchased. “Avg. Correct” is the share of instances of correct state-of-the-
world predictions (color of jar guesses).
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Table A.3. Information Acquisition: Extensive Margin

Dependent Variable: Purchased Any Signals
Between-Subject Data Within-Subject Data

(1) (2) (3) (4)
βω = 1

2 , 2B 0.122 1.325 0.107 0.970
[0.054] [0.542] [0.025] [0.209]

βω = 1
2 , 0B 0.189 1.675 0.230 1.932

[0.060] [0.577] [0.031] [0.277]
βω = 9

13 , 2B -0.021 -0.169 -0.044 -0.415
[0.061] [0.551] [0.032] [0.277]

βω = 9
13 , 0B -0.187 -1.535 -0.124 -1.179

[0.055] [0.466] [0.035] [0.327]
βω = 81

97 , 0B -0.371 -2.977 -0.266 -2.470
[0.059] [0.577] [0.046] [0.522]

Cost -0.006 -0.054 -0.007 -0.059
[0.000] [0.004] [0.000] [0.005]

Period 0.010 0.080 0.001 0.007
[0.004] [0.035] [0.002] [0.015]

Period2 -0.000 -0.002 -0.000 -0.002
[0.000] [0.001] [0.000] [0.001]

Constant 0.892*** 3.449*** 0.726*** 2.677***
[0.050] [0.488] [0.029] [0.404]

σ2
u 1.741*** 1.767***

[0.187] [0.221]
Individual Fixed Effects No No Yes No
Wave/Task Order Yes Yes Yes Yes

Mean of Dependent Variable 0.533 0.533 0.446 0.446
P Values for One-Tailed Wald Tests
βω = 9

13 : 2B (2:0) = 0B (3:1) 0.004 0.005 0.015 0.009
βω = 1

2 : 2B (1:1) = 0B (2:2) 0.131 0.283 0.000 0.000
0B: 2:2 = 3:1 0.000 0.000 0.000 0.000
2B: 1:1 = 2:0 0.000 0.000 0.000 0.000

Number of Observations 3,744 3,744 4,032 4,032
Number of Clusters 156 156 84 84
Log Likelihood -2198.3 -1490.1 -1459.3 -1513.1
BIC 4478.8 3070.6 3001.5 3125.9
AIC 4416.6 3002.1 2938.5 3050.2

Notes: The table shows linear probability model (1 and 3) and random effects logit model (2 and 4)
estimates of the probability of information acquisition. Estimates using between- (within-) subject
data are reported in columns 1 and 2 (3 and 4). Robust standard errors are clustered at the individual
level in brackets. The omitted treatment variable is baseline treatment 4B (βω = 1

2
): no free

information before decision to acquire information. 29



Table A.4. Information Acquisition: Intensive Margin

Dependent Variable: Number of Signals Purchased
Between-Subject Data Within-Subject Data

(1) (2) (3) (4)
βω = 1

2 , 2B 0.170 0.551 0.093* 0.469***
[0.123] [0.361] [0.054] [0.112]

βω = 1
2 , 0B 0.309** 1.065*** 0.417*** 1.229**

[0.135] [0.363] [0.070] [0.120]
βω = 9

13 , 2B -0.112 -0.371 -0.166** -0.446***
[0.141] [0.361] [0.068] [0.113]

βω = 9
13 , 0B -0.370** -0.950*** -0.306*** -0.876***

[0.157] [0.363] [0.086] [0.120]
βω = 81

97 , 0B -0.889*** -2.096*** -0.892*** -1.953***
[0.226] [0.392] [0.218] [0.215]

Cost -0.024*** -0.055*** -0.030*** -0.066***
[0.001] [0.001] [0.002] [0.002]

Period 0.029*** 0.069*** 0.005 0.002
[0.010] [0.020] [0.005] [0.007]

Period2 -0.001** -0.002** -0.000 -0.001
[0.000] [0.001] [0.000] [0.001]

Constant 1.210*** 3.191*** 0.919*** 3.031***
[0.118] [0.318] [0.076] [0.247]

ln(α) -0.645 -18.850***
[4.044] [4.108]

ln(σu) 1.757*** 2.048***
[0.115] [0.172]

ln(σe) 1.694*** 1.823***
[0.033] [0.037]

Individual Fixed Effects No No Yes No
Wave/Task Order Yes Yes Yes Yes

Mean of Dependent Variable 1.264 1.264 1.066 1.066
P Values for One-Tailed Wald Tests
βω = 9

13 : 2B (2:0) = 0B (3:1) 0.065 0.058 0.051 0.001
βω = 1

2 : 2B (1:1) = 0B (2:2) 0.141 0.080 0.000 0.000
0B: 2:2 = 3:1 0.000 0.000 0.000 0.000
2B: 1:1 = 2:0 0.000 0.000 0.000 0.000

Number of Observations 3,744 3,744 4,032 4,032
Number of Clusters 156 84
Log Likelihood -4469.7 -4523.1 -3977.3 -4208.1
BIC 9029.9 9145.0 8104.0 8524.2
AIC 8961.4 9070.3 7990.6 8442.2

Notes: The table shows random effects Poisson model (1 and 3) and random effects Tobit model (2
and 4) estimates of the amount of information acquired (number of balls purchased). Estimates using
between- (within-) subject data reported in columns 1 and 2 (3 and 4). Standard errors (clustered
at the individual level for specifications 1 and 3) in brackets. Omitted treatment variable is baseline
treatment 4B (βω = 1

2
): no free information before decision to acquire information.
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Table A.5. Correct Choice

Dependent Variable: Choose Correct Color of Jar
Between-Subject Data Within-Subject Data

(1) (2) (3) (4)
βω = 1

2 , 2B -0.035 -0.157 -0.067*** -0.257***
[0.027] [0.126] [0.022] [0.096]

βω = 1
2 , 0B -0.067** -0.312** -0.122*** -0.493***

[0.028] [0.125] [0.033] [0.138]
βω = 9

13 , 2B 0.041* 0.199* 0.038 0.201*
[0.024] [0.120] [0.024] [0.111]

βω = 9
13 , 0B 0.029 0.148 0.007 0.050

[0.023] [0.114] [0.021] [0.097]
βω = 81

97 , 0B 0.188*** 1.184*** 0.166*** 0.992***
[0.030] [0.250] [0.030] [0.204]

Cost -0.000 -0.002* -0.001*** -0.004***
[0.000] [0.001] [0.000] [0.001]

Period -0.009** -0.048** -0.001 -0.002
[0.004] [0.021] [0.001] [0.006]

Period2 0.000*** 0.002*** 0.000 0.001
[0.000] [0.001] [0.000] [0.001]

Constant 0.773*** 1.250*** 0.712*** 0.849***
[0.031] [0.161] [0.018] [0.102]

σ2
u -2.430*** -3.725***

[0.378] [0.852]
Individual Fixed Effects No No Yes No
Wave/Task Order Yes Yes Yes Yes

Mean of Dependent Variable 0.694 0.694 0.666 0.666
P Values for One-Tailed Wald Tests
βω = 9

13 : 2B (2:0) = 0B (3:1) 0.307 0.343 0.112 0.104
βω = 1

2 : 2B (1:1) = 0B (2:2) 0.161 0.140 0.058 0.047
0B: 2:2 = 3:1 0.000 0.000 0.000 0.000
2B: 1:1 = 2:0 0.002 0.002 0.000 0.000

Number of Observations 3,744 3,744 4,032 4,032
Number of Clusters 156 156 84 84
Log Likelihood -2367.9 -2253.7 -2595.1 -2523.0
BIC 4818.2 4597.9 5273.2 5145.6
AIC 4755.9 4529.4 5210.2 5070.0

Notes: The table shows linear probability model (1 and 3) and random effects logit model (2 and 4)
estimates of the probability of correctly predicting the state of world (guessing the color of the jar).
Estimates using between- (within-) subject data are reported in columns 1 and 2 (3 and 4). Robust
standard errors are clustered at the individual level in brackets. The omitted treatment variable is
baseline treatment 4B (βω = 1

2
): no free information before decision to acquire information.
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Table A.6. Determinants of Individual-Level Differences in Mean/Median Information 
Acquisition across Treatments for βω = 9/13 : 2B(2 : 0) − 0B(3 : 1)

Difference in Means Difference in Medians
(1) (2) (3) (4) (5) (6)

Number of Safe Options Chosen -0.303*** -0.170** -0.169** -0.178* -0.138 -0.169*
(0.090) (0.071) (0.083) (0.099) (0.086) (0.091)

Multiple Switching (Dummy) -0.232 0.050 -0.140 -0.169 -0.195 -0.133
(0.250) (0.245) (0.293) (0.327) (0.303) (0.326)

No Switching (dummy) -1.844*** -1.042** -0.619 -1.710** -0.600 -0.634
(0.537) (0.402) (0.492) (0.726) (0.564) (0.579)

Female 0.050 0.033 0.131 0.022
(0.297) (0.276) (0.383) (0.333)

Number of Previous Experiment Participations 0.005 0.011 0.002 0.005
(0.015) (0.010) (0.018) (0.017)

Number of Correct Responses to CRT Questions -0.215** -0.105 -0.040 0.046
(0.099) (0.110) (0.118) (0.113)

Self-Reported GPA -0.206 -0.352 -0.146 -0.219
(0.225) (0.259) (0.283) (0.285)

Number of Statistics Classes Taken -0.079 -0.003 -0.084 -0.066
(0.078) (0.064) (0.086) (0.082)

Number of Math Classes Taken -0.081 -0.119 0.003 -0.027
(0.113) (0.093) (0.118) (0.100)

Number of Ethics Classes Taken 0.242* 0.171 0.347** 0.275*
(0.145) (0.153) (0.151) (0.146)

Age -0.105 -0.181 -0.137 -0.190
(0.124) (0.118) (0.155) (0.140)

Familiarity with Bayes’s Theorem (0-3) 0.182 -0.037 0.215 0.195
(0.181) (0.197) (0.193) (0.178)

Number of Trials in βω = 1/2 : 0B(3 : 1) 0.094* 0.082* 0.096* 0.012 0.027 0.038
(0.054) (0.049) (0.050) (0.058) (0.051) (0.051)

Number of Trials in βω = 9/13 : 2B(2 : 0) -0.001 -0.019 -0.032 0.021 -0.007 -0.015
(0.043) (0.038) (0.059) (0.063) (0.053) (0.057)

Task Order for 0B (βω = 1/2 : 3 : 1) 0.622** 0.590*** 0.438* 0.489* 0.466** 0.492**
(0.236) (0.223) (0.253) (0.255) (0.230) (0.243)

Task Order for 2B (βω = 9/13 : 2 : 0) 0.145 0.106 -0.236 0.527 0.340 0.190
(0.420) (0.378) (0.488) (0.441) (0.406) (0.406)

Predicted Difference in Means 0.528***
(0.135)

Predicted Difference in Medians 0.988***
(0.159)

Constant 1.738 -1.284 4.426 1.230 -1.226 3.202
(2.812) (1.207) (2.792) (3.422) (1.283) (3.149)

Session FE Yes Yes Yes Yes Yes Yes
Mean Dependent Variable -0.17 -0.17 -0.03 -0.14 -0.14 -0.11
Standard Deviation of Dependent Variable 0.90 0.90 0.82 0.99 0.99 0.90
Number of Observations 84 84 84 84 84 84

Ha: Coef. Predicted Differences = 1
F statistic: 12.204 0.006
p values : 0.001 0.939

Notes: The table shows OLS estimates of the individual-level behavior across treatments for βω = 9/13 : 2B(2 : 0) − 0B(3 : 1). The 
dependent variable in columns 1–2 (4–5) is individual differences in mean (median) information acquisition across treatments. The 
dependent variable in column 3 (6) is the individual observed deviation from predictions in differences in mean (median) information 
acquisition across treatments. Robust standard errors are in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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Table A.7. Determinants of Individual-Level Differences in Mean/Median Information 
Acquisition across Treatments for βω = 1/2 : 2B(1 : 1) − 0B(2 : 2)

Difference in Means Difference in Medians
(1) (2) (3) (4) (5) (6)

Number of Safe Options Chosen -0.229** -0.001 0.139* -0.305** -0.027 0.021
(0.094) (0.075) (0.075) (0.119) (0.082) (0.083)

Multiple Switching (Dummy) -0.108 0.176 0.139 -0.287 -0.130 -0.273
(0.292) (0.215) (0.301) (0.381) (0.222) (0.299)

No Switching (Dummy) -1.881*** -0.125 0.766 -2.302*** -0.710* -0.389
(0.559) (0.497) (0.566) (0.647) (0.396) (0.558)

Female 0.052 -0.099 0.120 -0.202
(0.275) (0.255) (0.359) (0.319)

Number of Previous Experiment Participations -0.008 -0.007 -0.007 -0.008
(0.015) (0.009) (0.022) (0.016)

Number of Correct Responses to CRT Questions -0.058 -0.011 -0.031 -0.114
(0.110) (0.092) (0.131) (0.112)

Self-Reported GPA -0.286 -0.042 -0.357 0.223
(0.269) (0.230) (0.378) (0.273)

Number of Statistics Classes Taken -0.050 -0.027 -0.135 -0.018
(0.077) (0.057) (0.099) (0.073)

Number of Math Classes Taken -0.087 0.079 -0.134 -0.066
(0.102) (0.086) (0.144) (0.113)

Number of Ethics Classes Taken -0.057 -0.268** -0.046 -0.056
(0.169) (0.133) (0.203) (0.150)

Age -0.044 0.072 0.031 0.022
(0.107) (0.114) (0.112) (0.107)

Familiarity with Bayes’s Theorem (0-3) -0.136 0.004 -0.033 0.242
(0.129) (0.116) (0.152) (0.164)

Number of Trials in βω = 1/2 : 0B(2 : 2) -0.045 -0.020 -0.009 -0.156** -0.088 -0.076
(0.059) (0.041) (0.050) (0.078) (0.063) (0.065)

Number of Trials in βω = 1/2 : 2B(1 : 1) 0.035 0.048 0.055 0.077 0.054 0.029
(0.061) (0.037) (0.043) (0.069) (0.046) (0.051)

Task Order for 0B (βω = 1/2 : 2 : 2) -0.249 -0.131 -0.112 -0.182 -0.205 -0.343*
(0.162) (0.131) (0.168) (0.219) (0.191) (0.199)

Task Order for 2B (βω = 1/2 : 1 : 1) -0.054 0.267 0.392 0.077 0.509 0.352
(0.562) (0.329) (0.374) (0.695) (0.446) (0.414)

Predicted Difference in Means 0.639***
(0.099)

Predicted Difference in Medians 0.776***
(0.133)

Constant 4.276* -0.444 -2.671 3.391 -0.487 -0.964
(2.522) (1.224) (2.747) (3.233) (1.499) (2.645)

Session FE Yes Yes Yes Yes Yes Yes
Mean Dependent Variable 0.27 0.27 -0.20 0.28 0.28 -0.54
Standard Deviation of Dependent Variable 0.88 0.88 0.73 1.15 1.15 0.85
Number of Observations 84 84 84 84 84 84

Ha: Coef. Predicted Differences = 1
F statistic: 13.407 2.815
p values : 0.000 0.098

Notes: The table shows OLS estimates of the individual-level behavior across treatments for βω = 1/2 : 2B(1 : 1) − 0B(2 : 2). The 
dependent variable in columns 1–2 (4–5) is individual differences in mean (median) information acquisition across treatments. The 
dependent variable in column 3 (6) is the individual observed deviation from predictions in differences in mean (median) information 
acquisition across treatments. Robust standard errors are in parentheses. * p<0.10, ** p<0.05, *** p<0.01
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B Additional Figures

Figure B.1. Coefficient Plots of Linear Probability Models Estimating the Probability of Purchasing Any 
Signals with Estimates Obtained Separately for Each Sample
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Figure B.2. Coefficient Plots of Poisson Models Estimating the Number of Purchased Signals with Estimates 
Obtained Separately for Each Sample
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Figure B.3. CDF of Information Purchased by Individuals during Last 12 Periods, by Treatment and Information 
Scenario for BSs
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Figure B.4. CDF of Information Purchased by Individuals during Last 12 Periods, by Treatment and Information 
Scenario for WSs
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Figure B.5. Individual Estimates of the Effect of Cost on Information Acquisition Decisions Using within-
Subject Data (Chapman-ESI Sample). The figure plots point estimates with 95 percent confidence intervals. The 
shaded area corresponds to 95 percent confidence intervals for the predicted effect of cost on information 
acquisition under risk neutrality.
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Figure B.6. Individual Estimates of the Effect of Cost on Information Acquisition Decisions Using between-
Subject Data from Wave 1 (UFM Sample). The figure plots point estimates with 90 percent confidence intervals. 
The shaded area corresponds to 90 percent confidence intervals for the predicted effect of cost on information 
acquisition under risk neutrality.
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C Instructions

This section presents the script used to run the wave 2 sessions and the slides to present instructions.40

Appendix section D.1 presents the instructions slides for the main task 4B 2B 0B treatment. Text in black
is common across all treatments. Instructions were presented through a video with audio that narrated the
slides. Full video of instructions available here.

Appendix section D.2 presents the control questions that followed the instructions. Appendix section D.3
presents the script used to conduct wave 2 sessions.

C.1 Instruction Slides
Overview

This is an experiment about economic decision-making. Various agencies have provided funds for
this research. If you understand the instructions (and depending on your decisions), you can earn
a considerable sum of money. At the end of today’s session you will receive your earnings in cash,
in private. In this experiment, the sums of money are expressed in Experimental Dollars (E$). At
the end of today’s session, we will convert your earnings into US Dollars, at an exchange rate
E$40 = $1. For today’s session, you will receive an initial payment of E$120.

It is important that you remain silent and not look at other people’s work. If you have any
questions, or need help of any kind, please raise your hand and an experimenter will come to you.
If you speak aloud, you will be asked to leave the experiment. We expect and appreciate your
cooperation.

Now we will describe the session in more detail.

Overview

Today’s experiment consists of four parts. In each part you will make some decisions. The other
participants will face similar decision-making tasks. However, their decisions will not affect your
earnings and you decisions will not affect their earnings.

When all four parts have been completed, one of those parts will be randomly chosen. In the
selected part one of your decisions will be chosen randomly and the result of said decision will
determine your earnings.

Your final earnings for today’s session will be the sum of your initial payment of E$120 and your
earnings in the decision which is randomly selected.

40We choose instructions for wave 2 since they are in English. Instructions for wave 1 are available from the authors upon request.

40

https://www.dropbox.com/sh/re5luf360o7148f/AABIpDIurt-5ZVvhrOqfIW0Ia?dl=0
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Introduction: Part 1

In the first part of the experiment there are twenty-four periods. In each period there are two jars,
one red and one blue. Each jar contains 60 balls which are the same color as the jar, and 40 which
are the color of the other jar.

The computer will randomly select one of the two jars. You must predict the color of the jar
selected for that period. If you predict the color of the jar, you can earn up to E $1, 000.

To help you predict, you can observe the color of some balls from the jar. The computer will show
you 4 balls for free and you will have the option to buy up to 5 additional balls (at a COST).

Next, we will explain this part of the experiment in m ore detail.

Jars and balls

At the beginning of each period the computer randomly selects one of two virtual jars: red or
blue. The probability that the color of the jar is red is 50% and the probability that it is blue is
50%.

The color of the jar in one period does not affect the color of the jar in another period or of
another participant. That is, the true color of jar is determined independently of the color of jar in
another period and for other participants.

Each jar is filled with 100 virtual balls; 60 correspond to the true color of the jar and 40 are the
color of the other jar. That is, the red jar contains 60 red balls and 40 blue balls. The blue jar
contains 60 blue balls and 40 red balls.

In this way, the color of a ball corresponds to the true color of jar with a probability of 60%. That
is, if the true color of jar is red, when drawing a ball, it will be red with 60% probability and will
be blue with 40% probability. If the true color of the jar is blue, when drawing a ball, it will be
blue with 60% probability and will be red with 40% probability.

Obtaining Information

Before you make your prediction about the color of the jar, you will get information by observing
the colors of several balls drawn from the jar which has been selected for that period. This will
work in the following way:

The computer draws a ball (chosen at random) from the jar for that period and records its color. It
then deposits the ball back into the jar and all the balls are mixed. Then, another ball is randomly
drawn and the color is recorded. The ball is again deposited in the jar and again the balls are
mixed. This process continues until all the balls shown in the period have been drawn and
recorded.

That is, each time the computer draws a ball from the jar, 60% of balls in the jar are the same color
as the jar, and 40% of the balls are the other color.
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Obtaining Information

Each period the computer will show you the colors of 4 balls taken from the jar at no cost. In
addition, you can buy additional balls.

[You will be able to see the colors of the 4 balls that the computer will show you at no cost
AFTER you decide how many balls to buy.]

[Out of the 4 balls that the computer will show you at no cost, you will be able to see the colors of
2 of these balls BEFORE you decide how many balls to buy. The colors of the other 2 balls will be
revealed AFTER you decide how many you want to buy.]

[You will be able to see the colors of the 4 balls that the computer will show you at no cost
BEFORE you decide how many balls to buy.]

Each additional ball you buy will have a COST. In each period, the COST of the balls will be
determined randomly and will be a number between 0 and 100, all being equally probable. (The
COST in one period does not affect that of other periods or other participants.)

After having seen [the colors of the 4 [2] free balls and] the COST of the additional balls, you will
decide how many you want to buy, if you want to buy any.

After you decide the number of balls you want to buy, you will see the colors of the free balls and
of the additional balls purchased.

Earnings from the prediction

After observing the colors of all the balls, you make your prediction regarding the color of the jar
for that period. If your prediction is correct, you will earn E$1, 000. If you do not correctly
predict the color, you will earn E$300. Regardless of whether you are correct or not, you will have
to pay the COST of the balls you bought that period.

That is, if your prediction about the color of the jar is correct, your earnings for the period will be
given by:

E$1, 000− COST · (# of balls purchased)

If your prediction is not correct, your earnings for the period will be given by:

E$300− COST · (# of balls purchased)
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Feedback

During the first twelve periods, you will not be able to observe the true color of the jar at the end
of each period. In the second twelve periods, you will be able to observe the true color of the jar at
the end of each period.

Summary

1. In each period there are two jars and the computer will select one of these at random: the
RED jar with 50% probability or the BLUE jar with 50% probability.

2. You will observe for free the colors of 4 balls. In addition, you will have the option to buy 0
to 5 additional balls, at a COST (selected randomly from between 0 to 100 for each period).

3. The color of each ball corresponds to the true color of the jar with 60% probability.

4. You must predict the color of the jar selected for that period. If your prediction is correct,
you earn:

E$1, 000− COST · (# of balls purchased)

5. If you do not correctly predict the color of the jar, then your earnings for the period are:

E$300− COST · (# of balls purchased)
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C.2 Control Questions
After the instructions video ended, participants had to complete an Instructions Comprehension
Test which consisted of the following (multiple choice) questions:

1. What is the probability that at the beginning of the period the computer selects the color
RED jar?

2. If at the beginning of the period the computer randomly selects the BLUE jar, what is the
probability that when drawing a ball from the jar it is a RED ball?

3. Assume that the jar selected at the beginning of the period is RED. Assume also that the
computer has already drawn the 4 balls that it will show, and they are all red. What is the
probability that if you draw an additional ball, it is RED?

4. Assume you decide to purchase three balls, at a cost of E$50 each. Also, assume you
correctly predict that the jar color is BLUE. If this decision is chosen at random for your
payment, what would be your profit?

5. Assume that for the last period, the true color of the jar selected by the computer was
BLUE. What is the probability that for the next period the computer randomly selects the
BLUE jar?

Participants had to answer all questions correctly in order to proceed to the experiment. If
participants selected the correct answer for a question, they received feedback and reinforced the
explanation for the correct response.

If participants selected the wrong answer, they received feedback and had a chance to answer
again. If they selected an incorrect answer for a second time, the screen was locked (and requested
a code that the experimental monitors had). It asked them to raise their hand so that the
experimental monitor could clarify any questions or misunderstandings the subject could
have.

After all participants had correctly answered all questions, they proceeded with the experimental
task.
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